Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains
نویسندگان
چکیده
The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in the amount of excitatory neurons that migrate along the radial scaffold.
منابع مشابه
Radial and tangential neuronal migration pathways in the human fetal brain: Anatomically distinct patterns of diffusion MRI coherence
Corticogenesis is underpinned by a complex process of subcortical neuroproliferation, followed by highly orchestrated cellular migration. A greater appreciation of the processes involved in human fetal corticogenesis is vital to gaining an understanding of how developmental disturbances originating in gestation could establish a variety of complex neuropathology manifesting in childhood, or eve...
متن کاملDeveloping Connectivity in Human Fetal Brains: Emerging Regional Variations
18W and 20W: Dominant radial pathways from the ventricular margin to the brain surface were found across most of the brain areas (Fig.1 left). At these stages, the radial pathways contain radial glial pathways, migrating neurons, and axons from those neurons [Rakic 2009]. We also observed intracortical horizontal short pathways that may reflect forming horizontal interneuron connections. Projec...
متن کاملTangential migration of neurons in the developing cerebral cortex.
The mammalian cerebral cortex is divided into functionally distinct areas. Although radial patterns of neuronal migration have been thought to be essential for patterning these areas, direct observation of migrating cells in cortical brain slices has revealed that cells follow both radial and nonradial pathways as they travel from their sites of origin in the ventricular zone out to their desti...
متن کاملCellular migration patterns in the developing mouse cerebral cortex.
The migration patterns of embryonic mouse cortical cells were investigated using a replication-incompetent retrovirus vector (BAG). The lateral ventricles of embryonic day 12 mouse embryos were infected with BAG and brains were harvested 2, 3, 4 and 6 days after infection. The location and morphology of all infected cortical cells were recorded from serial sections of entire brains, which were ...
متن کاملCell migration in the developing chick diencephalon.
We previously reported that retrovirally marked clones in the mature chick diencephalon were widely dispersed in the mediolateral, dorsoventral and rostrocaudal planes. The current study was undertaken to define the migration routes that led to the dispersion. Embryos were infected between stages 10 and 14 with a retroviral stock encoding alkaline phosphatase and a library of molecular tags. Em...
متن کامل